Skip to main content

genkitx-anthropic

Firebase Genkit - Anthropic AI Plugin

Anthropic AI Community Plugin for Google Firebase Genkit

Github lerna versionNPM DownloadsGitHub Org's starsGitHub LicenseStatic Badge
GitHub Issues or Pull RequestsGitHub Issues or Pull RequestsGitHub commit activity

genkitx-anthropic is a community plugin for using Anthropic AI and all its supported models with Firebase Genkit.

Installation​

Install the plugin in your project with your favorite package manager:

  • npm install genkitx-anthropic
  • yarn add genkitx-anthropic

Supported models​

The plugin supports the most recent Anthropic models: Claude 3.5 Sonnet, Claude 3 Opus, Claude 3 Sonnet, and Claude 3 Haiku.

Usage​

Initialize​

import 'dotenv/config';

import { configureGenkit } from '@genkit-ai/core';
import { defineFlow, startFlowsServer } from '@genkit-ai/flow';
import { anthropic } from 'genkitx-anthropic';

configureGenkit({
plugins: [
// Anthropic API key is required and defaults to the ANTHROPIC_API_KEY environment variable
anthropic({ apiKey: process.env.ANTHROPIC_API_KEY }),
],
logLevel: 'debug',
enableTracingAndMetrics: true,
});

Basic examples​

The simplest way to call the text generation model is by using the helper function generate:

// ...configure Genkit (as shown above)...

const response = await generate({
model: claude3Haiku, // model imported from genkitx-anthropic
prompt: 'Tell me a joke.',
});

console.log(await response.text());

Multi-modal prompt​

// ...configure Genkit (as shown above)...

const response = await generate({
model: claude3Haiku,
prompt: [
{ text: 'What animal is in the photo?' },
{ media: { url: imageUrl } },
],
config: {
// control of the level of visual detail when processing image embeddings
// Low detail level also decreases the token usage
visualDetailLevel: 'low',
},
});
console.log(await response.text());

Within a flow​

// ...configure Genkit (as shown above)...

export const myFlow = defineFlow(
{
name: 'menuSuggestionFlow',
inputSchema: z.string(),
outputSchema: z.string(),
},
async (subject) => {
const llmResponse = await generate({
prompt: `Suggest an item for the menu of a ${subject} themed restaurant`,
model: claude3Opus,
});

return llmResponse.text();
}
);
startFlowsServer();

Contributing​

Want to contribute to the project? That's awesome! Head over to our Contribution Guidelines.

Need support?​

info

This repository depends on Google's Firebase Genkit. For issues and questions related to Genkit, please refer to instructions available in Genkit's repository.

Reach out by opening a discussion on Github Discussions.

Credits​

This plugin is proudly maintained by the team at The Fire Company. 🔥

License​

This project is licensed under the Apache 2.0 License.